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Viscosity in water from first-principles and deep-neural-
network simulations
Cesare Malosso1, Linfeng Zhang2,3, Roberto Car2,4, Stefano Baroni 1,5✉ and Davide Tisi1

We report on an extensive study of the viscosity of liquid water at near-ambient conditions, performed within the Green-Kubo
theory of linear response and equilibrium ab initio molecular dynamics (AIMD), based on density-functional theory (DFT). In order to
cope with the long simulation times necessary to achieve an acceptable statistical accuracy, our ab initio approach is enhanced with
deep-neural-network potentials (NNP). This approach is first validated against AIMD results, obtained by using the
Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional and paying careful attention to crucial, yet often overlooked,
aspects of the statistical data analysis. Then, we train a second NNP to a dataset generated from the Strongly Constrained and
Appropriately Normed (SCAN) functional. Once the error resulting from the imperfect prediction of the melting line is offset by
referring the simulated temperature to the theoretical melting one, our SCAN predictions of the shear viscosity of water are in very
good agreement with experiments.

npj Computational Materials           (2022) 8:139 ; https://doi.org/10.1038/s41524-022-00830-7

INTRODUCTION
Shear viscosity is one of the most important transport properties
governing the macroscopic flow of liquids. As such, it plays a
fundamental role in various fields of science and technology, such
as, e.g., chemical and mechanical engineering or earth and
planetary sciences, to name but a few. For instance, the viscosity
of a solvent crucially affects the dynamics of solutes and the
reactions rates, of fundamental importance in the study of
biological processes and chemical reactions1–3. The value of the
viscosity of liquid iron, abundant in Earth’s outer core, is key in the
prediction of the magnetic field of rocky planets4,5. An accurate
determination of the temperature and pressure profile of the
viscosity is also essential for the correct modeling of tidal
interactions in the planets’ interior, in particular in the presence
of icy layers6,7.
In this work, we focus on water, an ubiquitous molecular liquid

with extraordinary and complex properties8–13. In spite of the
great importance of this system and the large number of studies
based on density-functional theory (DFT) and ab initio molecular
dynamics (AIMD) devoted to it14–22, all of these efforts have, until
very recently23, dodged its viscous properties, because an accurate
computation of the viscosity of water would require exceedingly long
first-principles simulations20. A number of studies based on classical
force fields exists24–27, but the poor transferability of these models
sets a limit to their predictive power. An attempt to estimate the
viscosity of water from first principles was made with an indirect
approach relying on the Stokes–Einstein relation22, which,
however, does not hold over all the phase diagram for liquid
water, particularly in the supercooled regime28–30.
A rigorous microscopic description of the shear viscosity of

liquids, η, is provided by the Green–Kubo (GK) theory of linear
response31–34, according to which its value is proportional to the
integral of the time auto-correlation function (tACF) of the off-
diagonal matrix elements of the stress tensor. This integral can be
estimated from the time series of the stress, generated by an

equilibrium molecular-dynamics simulation of the system of
interest. A number of different procedures have been developed
to cope with the evaluation of the GK integral35,36. Here, we adopt
a spectral approach, recently proposed by Ercole et al.37–40, which
allows one to compute transport coefficients, along with the
statistical errors affecting them, from shorter trajectories than
previously thought to be necessary. This progress notwithstand-
ing, the estimate of transport coefficients from AIMD may require
generating trajectories of a few hundred picoseconds for systems
as large as a few hundred atoms. It is evident that, although
technically quite possible, AIMD simulations of this size do not
lend themselves to an easy estimate of the statistical accuracy of
the results, let alone a systematic exploration of a broad region of
the phase diagram of a material.
The last decade has seen the rise of machine-trained potentials,

as represented by either deep-neural networks41–44 or by Gaussian
processes45, as powerful tools for atomistic simulations. These
potentials are able to deliver a nearly quantum mechanical
accuracy at a cost that is only marginally higher than that of
classical force fields. This opens the way to extend the scope of
AIMD simulations to the size range necessary for the computation
of reliable transport coefficient such as the viscosity. In the present
work, we adopt the recently developed Deep Potential frame-
work43,46,47 to study the shear viscosity of liquid water. Deep
potential molecular dynamics (DPMD) simulations have already
been proved to successfully predict bulk thermodynamic proper-
ties beyond the reach of direct DFT calculations13,48–52, as well as
dynamic properties like mass diffusion in solid state electro-
lytes53,54, their interactions with defects55, thermal transport
properties in silicon56, infrared spectra of water and ice57, Raman
spectra of water58 and very recently also the thermal conductivity
of liquids such as liquid water59.
So far, a combination of AIMD, advanced data analysis, and

neural-network techniques has only been applied to thermal and
charge transport39,40,55,59–61. In this work, we attempt to apply
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them to the computation of viscosity. In this study, we report on
calculations, from both direct DFT and DPMD simulations, of the
shear viscosity of water. We show that η can be obtained with
trajectories of ≈400 ps, which are still quite demanding for an
extensive ab initio study over a broad portion of the phase
diagram. We thus take advantage of the DPMD technique and
perform extensive simulation employing a deep-neural-network
potential (NNP) trained on extensive DFT data. Our methodology
proceeds in two steps. In the first, we train a NNP on
Perdew–Burke–Ernzerhof (PBE)62 data and validate our procedure
against results from a rather long (400-ps) AIMD trajectory. We
then adopt the strongly constrained and appropriately normed
(SCAN) meta-GGA exchange-correlation (XC) functional63,64, which
provides a much more accurate description of the H-bond
network in water19, to perform extensive simulations of the
viscous properties of water just above melting. Close to melting,
the viscosity depends very sensitively on temperature. Once the
error resulting from the imperfect prediction of the melting line is
offset by referring the simulated temperature to the theoretical
melting one, our SCAN predictions of the shear viscosity of water
in a temperature range extending above the melting line are in
very good agreement with experiment.
Our paper is organized as follows. “Results” contains all the

discussion of the results: in “Ab initio molecular dynamics” we
present the results of our direct PBE-AIMD simulations and draw
some conclusions on the simulation time and length scales
necessary to achieve an acceptable statistical accuracy; in “PBE
NNP” we benchmark our NNP against ab initio MD simulations of
liquid water at the PBE level of theory; in “Statistical analysis and
finite-size scaling“ we expand our analysis on the statistical
properties of our estimator of the shear viscosity and briefly
discuss its size-dependency. Once our methodology is set up
and validated, in “SCAN NNP” we report on an extensive set of
simulations performed with a NNP model trained on SCAN
meta-GGA DFT data and we compare their results with available
experimental data and our PBE-NNP results. We show that SCAN
meta-GGA reduces the deviation from experiments of the
predicted shear viscosity. “Discussion” contains our final discus-
sion with some interesting perspectives and further applications
of our work. In “Methods”, we recall the main theoretical and
numerical methods used throughout the work: the main aspects
of the GK theory of transport; its application to viscosity; the
main data-analysis technique; and briefly describe the neural-
network model.

RESULTS
Ab initio molecular dynamics
We performed AIMD simulations of liquid water at near-ambient
conditions using the PBE62 XC functional, the plane-wave
pseudopotential method, Hamann–Schluter–Chiang–Vanderbilt
norm-conserving pseudopotentials65, and a kinetic-energy cutoff
of 85 Ry. The simulated system was made of 64 molecules at the
standard density of 1 gr cm−3, corresponding to a cubic box of
edge l= 12.43 Å. All the simulations were carried out with the Car-
Parrinello extended-Langrangian method66 using the cp.x
component of the QUANTUM ESPRESSO™ distribution67–69 and
setting the fictitious electronic mass to 25 physical masses and the
timestep to dt= 0.073 fs. We performed two simulations aiming at
thermodynamic conditions near ambient temperature and some-
what above it. As PBE is known to enhance the short-range
structure of water and to overestimate the melting temperature
by ≈ 140 K70,71, we set the target temperatures of the two
simulations to 450 and 600 K, respectively. Both trajectories were
first equilibrated in the NVT ensemble using a Nosè-Hoover
thermostat72 at the target temperature, followed by long
production NVE runs of 400-ps. Finally, the shear viscosity was

obtained from the cepstral analysis of the power spectrum of the
off-diagonal elements of the stress, using the SporTran73 code.
In Fig. 1, we display the (moving averages74 of the) power

spectra of the stress-tensor time series resulting from our two
simulations. While showing similar features at high frequency, the
two spectra differ substantially approaching ω= 0. In particular,
lower temperatures see the appearance of sharp peaks near ω= 0,
which requires a greater care in the cepstral analysis of the data,
which is based on a low-pass filter of the (logarithm of) the power
spectra. In the inset, we display the low-frequency region of the
spectra together with the results carried out by the cepstral
analysis, i.e., by applying a low-pass filter to the logarithm of the
raw spectra. The filtered spectra are represented by thick solid
lines whose zero-frequency value is a fair and accurate estimate of
the shear viscosity we are after:

η ¼ 0:383 ± 0:023 cP at 454 K;

0:178 ± 0:005 cP at 600 K:

�
ðPBEÞ

where the unit cP stays for centipoise, 1 cP= 10−3 Pa⋅s. It is often
assumed that the predictions of ab initio simulations should be
compared with experiments upon shifting the simulated tem-
perature by the offset between the theoretical and experimental
melting temperatures, which, in the case of PBE, amounts to
Tm(PBE)− Tm(expt) ≈ 140 K71. We thus compare our value
predicted by PBE at T= 454 K with the experimental value
measured at T= 313 ≈ 454−140 K, ηexpt(T= 313 K)= 0.653 cP.
The agreement is fair, on account of both the uncertainties
related to the empirical temperature shift and the very sensitive
dependence of the viscosity upon temperature near melting. More
on the meaning of the residual disagreement will be discussed in
“SCAN NNP”.
In Fig. 2, we display how the prediction of the shear viscosity in

water depends on the length of the simulation. In order to
highlight the impact of possibly long relaxation times on the
estimate of the transport coefficient, we have split our 400-ps
trajectories into segments of 100, 200, and 300-ps (in the latter
case the two segments were overlapping). The estimates from
different segments coincide with the statistical errors evaluated
within each of them at 600 K, but not quite so at 454 K. This can be
ascribed to the emergence of a narrow peak in the stress power
spectrum at ω= 0 (see Fig. 1), related to an increase of the stress
correlation time occurring as the freezing temperature is

Fig. 1 Ab initio power spectra. Power spectra of the off-diagonal
elements of the stress in water at 454 K (blue) and 600 K (orange),
obtained from AIMD simulations (see text). The spectra are filtered
by a moving average with a window of 0.05 THz. The thick solid lines
in the inset represent the cepstral-filtered spectra whose zero-
frequency value gives an estimate of the shear viscosity.
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approached. A similar behavior had been already observed by
Ercole et al.37 in the case of heat transport in strongly harmonic
crystals. All these considerations suggest that near freezing the
computation of the shear viscosity requires longer simulation runs,
and even longer runs would be required for a fair evaluation of the
statistical uncertainties, indicating that AIMD may not be the most
efficient approach to explore a broad range of thermodynamic
conditions. In the following we show that neural-network models
of inter-atomic interactions trained on ab initio data provide a valid
alternative to direct AIMD simulations, yielding results of similar
quality at a much lower computational cost.

PBE NNP
In order to appraise the ability of NNP to accurately predict shear
viscosity, we have generated one such model, by training it on a
set of PBE-DFT data. The training dataset is prepared via a recently
proposed “on-the-fly” learning procedure called Deep Potential
Generator (DP-GEN)75,76 and it consists of the energies and atomic
forces of 4000 configurations of water generated by the DP-GEN
from NPT MD trajectories at different temperatures in the
[300–700 K] range and for pressures up to 50 kbar. The PBE-NNP
is then constructed and trained with the DeePMD-kit. The cutoff
radius is set to 6 Å. The size of the embedding and fitting nets is
(50, 50, 50) and (250, 250, 250), respectively. The model was
trained by minimizing the standard loss function, L, presented in
Eq. (8) of “Methods” with 2 million steps of Adam stochastic
gradient descent77. We tried to include the values of the virial in
the definition of the loss function, but we found no improvement
with respect to the standard definition of Eq. (8), and thus decided
not to modify it.
Figure 3 shows a scatter plot of the NNP predictions for atomic

forces and stress vs. PBE-DFT data, evaluated over a set of 10,000
configurations, not included in the training dataset. The average
error on the forces and on the off-diagonal elements of the virial
are σF= 40 meV Å−1 and σΞ= 1.4 meV/atom, respectively,
corresponding to correlation coefficients78 of 0.998 and 0.995,
respectively.
In order to validate our neural-network methodology for the

prediction of the shear viscosity, we performed DPMD simulations
in the NVE ensemble for the same model of liquid water described
above. Simulations of 20-ns were run at two different tempera-
tures, 454 K and 600 K, using our NNP trained to PBE water. All
simulations were carried out using the LAMMPS code79 interfaced
with DeepMD-kit. In Fig. 4 we display the results obtained by
analyzing independently each one of the about 50 400-ps
segments in which we have partitioned the whole 20-ns
trajectory. The shear viscosity of each segment is obtained again
by cepstral analysis using the SporTran code and is represented

by solid dots together with its estimated statistical error. The blue
and orange regions represent respectively the estimate of the
shear viscosity given in “Ab initio molecular dynamics” from ab
initio MD simulations at 454 K and 600 K. We observe a very good
agreement between the two approaches and conclude therefore
that our NNP is capable of predicting correctly the shear viscosity
of water at the given pT conditions. Also, notice the close
agreement between the standard deviation of the viscosity
estimated by cepstral analysis on individual 400-ps trajectory
segments and the value computed over a sample of about
50 segments. More on the statistical analysis and significance of
our data in “Statistical analysis and finite-size scaling”.
In Table 1 we report our results for the viscosity of water

computed at two different temperatures with DPMD and NNP
trained on PBE-DFT data, obtained from very long (20-ns)
trajectories, and compare them with the AIMD data of “Ab initio
molecular dynamics”.

Statistical analysis and finite-size scaling
We are now ready to investigate the statistical behavior of the
shear viscosity for different simulation lengths. To this end, we
sliced our 20-ns simulations in segments of smaller lengths
(100-, 200-, and 400-ps) and analyzed them independently. Before
proceeding, we remind the pivotal tenet of cepstral analysis: if a

Fig. 2 η vs. length of the simulation. Dependency of the shear
viscosity η on the length of the simulation, estimated by AIMD a at
454 K and b 600 K. Different colors refer to different simulation
times. Error bars represent standard deviations.

Fig. 3 Neural network accuracy. Scatter plot of the NNP forces (a)
and off-diagonal elements of the virial per atom (b) vs. DFT data, for
a dataset of 10,000 configurations. The corresponding correlation
coefficients are R2a ¼ 0:998 and R2b ¼ 0:995.
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sample of a stationary stochastic process is longer than all the
relevant time scales of the process, then the sample spectrum (i.e.,
the squared modulus of the Fourier transform of the series) equals
the theoretical power spectrum of the process, times a set of
identically distributed χ2 stochastic variables that are independent
of each other for different frequencies. This implies that the low-
pass-filtered logarithm of the sample spectrum is normally
distributed at any (sufficiently low) frequency37 and that the
estimator of the transport coefficient—which is proportional to
the ω= 0 value of the filtered spectrum—is, therefore, a log-
normal variate. In order to check the reliability of the cepstral
estimate of the viscosity from trajectories of different lengths, in
Fig. 5 we display the distributions of the logarithm of these
estimates from trajectory segments of different length (100-, 200-,
and 400-ps) and report the p-values of the Shapiro-Wilk
(SW) normality test80 for each distribution. We observe that: i) at
T ≈ 450 K the WS test is failed for segments shorter than 400-ps,
indicating the subsistence of slow stress fluctuations that
adversely affect our data analysis technique ; ii) at T= 600 K the
WS is never failed with respect to a standard significance level
α= 0.05; even for the shortest segment length (100 ps), for which
we compute a p value of 0.07 over a sample of 200 segments
logðηÞ; iii) the width of the distributions of the viscosity estimated
at different lengths is slightly larger than the standard deviation
estimated within each segment by cepstral analysis; iv) this
difference decreases as the length of the segments increases, until
it roughly vanishes at 400-ps; v) this difference also decreases by
increasing the temperature. This observation is made more
quantitative in Fig. 6, which shows the correlation between the
standard deviations of the cepstral estimates of the viscosity
from trajectories of different lengths and temperatures, vs. the
spread of the distribution of their values resulting from different

trajectories. The former quantity is itself affected by a statistical
uncertainty because cepstral analysis returns different standard
deviations for different trajectories of the same length. Figure 6
indicates that as the system approaches freezing from above and
the viscosity increases, the low-frequency components of the virial
fluctuations become increasingly important, and simulations of
increasing length become necessary to cope with them. This is
confirmed in Fig. 7 that displays the low-frequency portion of the
power spectrum of the off-diagonal elements of the stress in water
at different temperatures, and shows that as the system approaches
freezing from above, a narrow peak develops at ω= 0, as a
consequence of the onset of long-lived relaxation modes. In the
present case, it appears that at 450 K trajectories as long as 400-ps
are needed to get a reliable estimate of the statistical error affecting
the estimate of the PBE-DFT viscosity. More generally, it seems that
the flexibility offered by NNP and the long simulations they can
afford are instrumental not only in exploring broad regions of the
phase diagram of a material, but also in providing a reliable
estimate of the statistical accuracy of individual simulations.
Finite-size effects may affect the transport properties calculated

in numerical simulations81,82. In order to quantify these effects in
the present case, we run up to 5-ns long NVE simulations at 454 K
and 600 K of PBE-NNP water at fixed density and increasingly
larger cells (with up to 4096 molecules). The results, reported in
Table 2, indicate that η shows no evident size dependence within
the error bars of our simulations.

SCAN NNP
The SCAN meta-GGA XC functional has demonstrated the ability
to predict well several properties of water over a broad range of
thermodynamic conditions, whose exploration was made possible
by NNP techniques13,19,20,48,83. A combination of AIMD and NNP
techniques, based on the SCAN XC functional, has recently been
successfully applied to the prediction of the heat transport
properties of liquid water59. In the following, we report on our
extension of this effort to the computation of the shear viscosity.
Accurate DPMD simulations were performed using NNP force

fields trained on both PBE and SCAN DFT data59 and the same
software setup as in “PBE NNP”. Our simulated systems consist of
512 water molecules. With systems of this size, temperature
fluctuations are smaller than 1 K. We first perform NVT simulations
at the target temperature, followed by NVE production runs, up to
5-ns long. The volume was fixed to the value corresponding to the
equilibrium densities evaluated in ref. 83 via enhanced-sampling
simulations for SCAN, while for PBE it is computed from direct
DPMD NPT simulations at ambient pressure, whose results are in
agreement with previous calculations18,84.
In Fig. 8 we compare our SCAN-NNP and PBE-NNP results with

each other and with experimental data85,86. Results below the
melting temperature, Tm, refer to the undercooled fluid, which
becomes increasingly viscous as the temperature decreases.
Remarkably, when temperatures are referred to the theoretical
melting one, the SCAN predictions for the viscosity are in close
agreement with the experiment at melting (and above, as we will
discuss shortly). This is not so for PBE. One could argue that PBE
yields too low a viscosity as a consequence of the too low
equilibrium density (0.77 vs ≈1 gr cm−3 at melting). This is not the
case, however, because repeating the simulations at the density of
1 gr cm−3 (dashed lines) results in only a marginal increase in the
predicted viscosity. We conclude that the common wisdom
according to which the properties of PBE water would match
those of real water at a simulation temperature≳100 K above the
experimental one is likely too simplistic: PBE water not only
freezes at too high temperature, but its dynamics is way too fast at
melting, as confirmed by the too-high self-diffusivity predicted by
PBE, with respect to SCAN and experiment, when all the
simulations are performed at the same temperature offset from

Fig. 4 Comparison between the shear viscosity predicted by DFT
AIMD simulations and by DPMD simulations. The results are
obtained from 400-ps long DFT AIMD simulations (horizontal blue
and orange bands, 454 and 600 K, respectively) and by DPMD
simulations of the same length (solid dots). The width of the bands
and the vertical bars across the dots indicate the standard deviation
of the data they refer to, as estimated by cepstral analysis (see
Section “Data analysis”). The red and green bars on the right of the
box indicate the sample averages and standard deviations of the
DPMD data. Error bars represent standard deviations.

Table 1. Viscosity of water [cP] computed from AIMD or DPMD
performed at two different temperatures using the PBE XC functional.

T = 454 K T = 600 K

AIMD 0.383 ± 0.023 0.178 ± 0.005

DPMD 0.402 ± 0.005 0.184 ± 0.001
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Tm as in the experiment. For instance, the self-diffusivity of water
predicted by PBE at a temperature T= 430 K, which is ≈ 20 K
higher than the PBE melting temperature, Tm(PBE) ≈ 410 K, is
0.45 Å2 ps−159. This is to be compared with a value of 0.19 Å2 ps−1

predicted by SCAN at 20 K above its own melting temperature (i.e.,
at 330 ≈ 312+ 20 K,19 and practically the same value measured at
T= 20 ∘C, 0.2 Å2 ps−187). In a model where the dependence of the
self-diffusivity on temperature was Arrhenius-like, this behavior
would be consistent with a too-small pre-exponential factor
predicted by PBE relative to SCAN and experiment. Further insight
into the dynamics of the water hydrogen-bond network at
melting would deserve further investigation.
In Fig. 9 we compare with the experiment the SCAN-NNP

predictions for the viscosity of water, on a temperature scale that
has been offset by the difference between the predicted melting
temperature for the model and the one observed in the
experiment, ΔT= 312−273= 39 K. One observes that, while the
agreement between theory and experiment is excellent above the
melting temperature, SCAN consistently overestimates the visc-
osity in the undercooled regime. This indicates that the tendency
toward dynamical arrest upon undercooling is occurring faster in
the model than in the experiment. Interestingly, a crossover
between the predicted and observed densities occurs at
temperatures near melting: SCAN slightly overestimates the
density of water for T > Tm, while it underestimates it in the
undercooled regime. We hypothesize that the too large SCAN
predictions for the viscosity below freezing may be related to a
propensity of SCAN to overestimate the strength of the hydrogen
bonds. In turn, this would lead to overestimate low-density (LD)
over high-density (HD) fluctuations upon cooling, corresponding
to configurations that underlie the structure of amorphous ices
and water. At very deep undercooling they may lead to phase
separation between an LD and a HD liquid13,88,89. The stronger
local structure of LD water with respect to HD water seems

compatible with a more marked solid-like behavior90–92 and,
hence, with a larger viscosity.

DISCUSSION
We conclude with a summary of our results and some interesting
perspectives and further applications of our work. In this article,
we have performed a systematic ab initio study of the viscosity of
liquid water, made possible by a combination of quantum-
mechanical first-principles and deep-neural-network techniques.
Our study confirms the ability of the SCAN exchange-correlation
density functional to predict a broad array of properties of water
over a wide range of thermodynamic conditions. Minor short-
comings observed in the undercooled regime are possibly related
to the subtle balance between the high- and low-density
fluctuations that become more prominent upon undercooling,
as one approaches the hypothesized metastable liquid–liquid
critical point. These shortcomings might be attenuated by training
a neural network on more accurate quantum mechanical data,
such as obtained from hybrid functionals18,93, or by using density-
corrected DFT94, which adopts a more accurate electron density
obtained at the Hartree–Fock level of theory. One of the most
successful in describing the property of water is the recently
developed DC-SCAN95, which produces remarkably accurate
molecular dynamics for liquid water, and a highly realistic self-
diffusion coefficient as a function of temperature. Finally, as a
technical, but important, side product of our study we have
highlighted that a careful analysis of the statistical properties of
the stress time series, from which the viscosity can be evaluated
through the Green–Kubo theory of linear response, is necessary,
and we have provided a detailed report on some mathematical
and computational tools that can be deployed to ease this task.

Fig. 5 Normalized distributions of the logarithm of the shear viscosities, log(η). The results are estimated over multiple MD segments (blue:
100-ps; orange: 200-ps; green: 400-ps) extracted from a 20-ns trajectory at 454 K (left) and 600 K (right). The reported data are referred to the
average, η. We remind that the absolute error on log(η) is the relative error on η. The shaded area denote the average standard deviation of
the shear viscosities, as estimated by cepstral analysis within each individual segment.
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Fig. 8 Comparison between the shear viscosities of water
computed via DPMD simulations using NNP force fields trained
to different DFT datasets and with experiments85,86. When not
visible, the error bars are smaller than the dots. Continuous lines
refer to simulations performed at the equilibrium density corre-
sponding to each temperature. PBE data marked with a dashed line
are obtained at the density of 1 gr cm−3. The thin vertical and
horizontal lines mark the melting temperature and the correspond-
ing viscosities. Error bars represent standard deviations.

Fig. 9 Comparison between the SCAN predictions and the
experimental values for the shear viscosity of water as a function
of the temperature. The temperature scale for SCAN data has been
offset by the difference between the theoretical and experimental
melting temperatures, Tm (see text). Error bars represent standard
deviations.

Fig. 6 Estimated standard deviations of η vs. spread of the
distribution. Correlation between the cepstral estimates of the
standard deviations of the viscosity of water from trajectories of
different lengths and temperatures, σcep, vs. the spread of the
distribution of their values resulting from different trajectories, σref
(see text). Error bars represent standard deviations.

Fig. 7 Moving average of the low-frequency region of the power
spectrum of the off-diagonal elements of the stress tensor in
water at different temperatures, as obtained from DPMD
simulations trained on PBE DFT data. An averaging window of
0.05 THz was used. Simulations were run at the fixed density of 1
gr cm−3.

Table 2. Shear viscosity [cP] computed for water at different
temperatures with PBE-NNP force field and using simulation boxes of
different sizes.

Size (number of molecules)

T [K] 64 512 4096

454 0.402 ± 0.005 0.402 ± 0.005 0.417 ± 0.007

600 0.184 ± 0.001 0.186 ± 0.002 0.186 ± 0.002

C. Malosso et al.
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METHODS
The GK theory of linear response31,32 provides a rigorous and elegant
framework to compute transport coefficients in extended systems, such as
the viscosity η, in terms of the stationary time series of a macroscopic flux
(a flux, J, is defined as the macroscopic average of a current density, j(r):
J ¼ 1

V

R
V jðrÞdr, where V is the system’s volume) evaluated at thermal

equilibrium with MD. For an isotropic system of N interacting particles, the
shear viscosity η is related to the fluctuations of the off-diagonal elements
of the stress tensor:

η ¼ V
kBT

Z 1

0
h σs Γ tð Þσs Γ0ð Þ i dt; (1)

where V is the volume of the system, T is its temperature, kB is the
Boltzmann’s constant, σs is any of the three independent off-diagonal
elements of the stress tensor, (σs 2 σxy ; σxz ; σyz

� �
), and Γt indicates the

time evolution of a point in phase space from the initial condition Γ0. In
practice, the value of the integral in Eq. (1) is averaged over the three pairs
of Cartesian indices.

Expression of stress tensor
The thermodynamic stress tensor is the equilibrium average, σ, of a
microscopic estimator, σ, defined as:

σαβ ¼ 1
V

XN
i¼1

piαpiβ
mi

þ Ξαβ

" #
; (2)

where α, β represent Cartesian coordinates, piα is the α component of the
momentum of the i-th atom, mi is its mass, while Ξ is the virial term,
defined as the derivative of the system’s potential energy, E, with respect
to an uniform scale transformation of the system (rα→ rα+ ∑βϵαβrβ, ϵ being
the strain tensor):

Ξαβ ¼ � 1
V

∂E
∂ϵαβ

: (3)

The expression of the virial term depends on the approach one adopts
to perform the simulations: explicit formulas in the classical case are given,
e.g., in ref. 96, for pair-wise potentials, and in ref. 97, for general many-body
potentials, while the quantum-mechanical case is thoroughly covered
within DFT in refs. 98,99. The expression of the virial stress using Deep
Potential models relies on the decomposition of the total energy into
individual atomic contributions, as it is the case for the heat current97, and
will be presented in some detail in “Neural-network potentials”.

Data analysis
The MD evaluation of the GK formula starts with the computation of the stress
time auto-correlation function. This can be done by exploiting the ergodic
hypothesis and turning the ensemble average into a time average. The
following step is to integrate the tACF, as stated in Eq. (1). Despite the
apparent simplicity of this process, the straight evaluation of any transport
coefficient through the GK formula is jeopardized by the fact that, while
ideally the tACF goes to zero for large times, in practice it is very noisy. Indeed,
as the tACF approaches zero, Eq. (1) starts accumulating noise and the integral
behaves like the distance traveled by a random walk, whose variance grows
linearly with the upper integration limit, making it very difficult to estimate
both the bias due to the truncation of the integral and the statistical error.
A better approach is to focus on the power spectrum S(ω) of the stress

time series σs(t), which, according to the Wiener–Khintchine theorem100,101,
is the Fourier transform of the tACF of time series:

SðωÞ¼: lim
t!1

1
t

R t
0 σsðt0Þeiωt

0
dt0

�� ��2D E
¼ Rþ1

�1 hσs tð Þσs 0ð Þieiωtdt:
(4)

According to Eq. (4), the shear viscosity we are after, Eq. (1), is proportional
to the ω= 0 value of the stress power spectrum,

η ¼ V
2kBT

S 0ð Þ; (5)

and any method able to accurately estimate the latter can be leveraged for
the former. Cepstral analysis102 is one such method37,39,40, and we will rely
on it in the present case, as previously done for the thermal and electrical
conductivities37,39,40,60,103. A full and user-friendly implementation of
cepstral analysis for the estimate of transport coefficients is available in
the SporTran73 open-source code.

Neural-network potentials
The Deep Potential scheme has already been fully explained in the
literature43,46, so in this section, we limit ourselves to a brief overview of its
main features.
Let us consider a system of N atoms and let us indicate by R the set of its

atomic coordinates: R ¼ fr1; :::; rNg 2 R3N . The potential energy surface of
the system EðRÞ ¼ E r1; :::; rNð Þ is a function of the 3N atomic coordinates
and of the species of each atom. Assuming that interatomic interactions
are local, we make the ansatz that E(R) can be decomposed into the sum of
atomic contributions, E i , which only depend on the coordinates of the
atoms that are close enough to the one they are associated with. In order
to establish a convenient notation, let us define by Ri the set of
coordinates of the atoms whose distance from the i-th atom is smaller that
a certain cut-off radius, Rc, referred to the position of the i-th atom itself (let
Ni be the number of them):

Ri ¼

r1i
r2i

..

.

rNi i

0
BBBB@

1
CCCCA ¼

x1i y1i z1i
x2i y2i z2i

..

. ..
. ..

.

xNi i yNi i zNi i

0
BBBB@

1
CCCCA 2 R3Ni ; (6)

where rij ¼ ri � rj ¼ ðxij; yij ; zijÞ. Using these ingredients, the symmetry-
preserving descriptors of the local atomic environments, Di , are defined
and fed to a neural network, which returns the local atomic energies
EsðiÞðDiÞ, depending on the chemical species of the i-th atom, s(i), and on
its environment, as described by Di (extensive details in ref. 46). The total
potential energy of the system is recovered as the sum of all the atomic
contributions, thus ensuring extensivity:

E Rð Þ ¼
X
i

EsðiÞ Dið Þ: (7)

The neural network is trained to return the local energy contribution
corresponding to any given local environment. The training is performed
by minimizing the so-called loss function, L with respect to the parameters
ω of the deep-neural network:

L ¼ pEΔE
2 þ pF

3N

X
i

ΔF2i ; (8)

where ΔE2 and ΔF2i are the squared deviations of the potential energy and
atomic forces respectively, between the reference DFT model and the NNP
predictions. The two prefactors, pE and pF are needed to optimize the
training efficiency and to account for the difference in the physical
dimensions of energies and forces.
The force acting on the i-th atom is given by:

Fi ¼ � ∂E
∂ri

¼ � ∂
∂ri

P
j
EsðjÞ Dj

� �
¼ �P

j

∂EsðjÞ
∂Dj

∂Dj

∂ri

(9)

where we applied Eq. (7) and the chain rule. Thus the computation of the
atomic forces can be split in two different contributions: the first is
the derivative of the atomic energy EsðjÞ with respect to each element Dj
of the descriptor and can be easily evaluated through TensorFlow104, while
the second term is given by the gradient of the descriptor with respect to
the position of the atoms105.
Beside energies and forces, the NNP predicts also the virial of the system

defined as in Eq. (3). Using Eq. (7) one can write105:

Ξαβ ¼
X
i

riαFiβ ¼ �
X
i≠j

rijα
∂EsðiÞ
∂rijβ

; (10)

where the second term can be further split in two contributions as
previously shown for the forces. We remark that the resulting formula is
well-defined in PBC and enters directly in the calculation of the stress given
by Eq. (2), serving our purpose of computing the shear viscosity through
the GK formula Eq. (1).

DATA AVAILABILITY
Numerical data supporting the plots and relevant results within this paper are
available on the Materials Cloud Platform106,107. In particular the folder contains: the
data training set and the input files for training the PBE-NNP model, and also the ab
initio stress time series.
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